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Boolean Algebra

ECE 152A – Summer 2009
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Reading Assignment

� Brown and Vranesic

� 2 Introduction to Logic Circuits

� 2.5 Boolean Algebra

� 2.5.1 The Venn Diagram

� 2.5.2 Notation and Terminology

� 2.5.3 Precedence of Operations

� 2.6 Synthesis Using AND, OR and NOT Gates

� 2.6.1 Sum-of-Products and Product of Sums Forms
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Reading Assignment

� Brown and Vranesic (cont)

� 2 Introduction to Logic Circuits (cont)

� 2.7 NAND and NOR Logic Networks

� 2.8 Design Examples

� 2.8.1 Three-Way Light Control

� 2.8.2 Multiplexer Circuit
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Reading Assignment

� Roth

� 2 Boolean Algebra

� 2.3 Boolean Expressions and Truth Tables

� 2.4 Basic Theorems

� 2.5 Commutative, Associative, and Distributive Laws

� 2.6 Simplification Theorems

� 2.7 Multiplying Out and Factoring

� 2.8 DeMorgan’s Laws
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Reading Assignment

� Roth (cont)

� 3 Boolean Algebra (Continued)

� 3.1Multiplying Out and Factoring Expressions

� 3.2 Exclusive-OR and Equivalence Operation

� 3.3 The Consensus Theorem

� 3.4 Algebraic Simplification of Switching Expressions
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Reading Assignment

� Roth (cont)

� 4 Applications of Boolean Algebra                

Minterm and Maxterm Expressions

� 4.3 Minterm and Maxterm Expansions

� 7 Multi-Level Gate Circuits                             

NAND and NOR Gates

� 7.2 NAND and NOR Gates

� 7.3 Design of Two-Level Circuits Using NAND and NOR 

Gates

� 7.5 Circuit Conversion Using Alternative Gate Symbols
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Boolean Algebra

� Axioms of Boolean Algebra

� Axioms generally presented without proof

0 · 0 = 0 1 + 1 = 1

1 · 1 = 1 0 + 0 = 0

0 · 1 = 1 · 0 = 0 1 + 0 = 0 + 1 = 1

if X = 0, then X’ = 1 if X = 1, then X’ = 0
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Boolean Algebra

� The Principle of Duality
from Zvi Kohavi, Switching and Finite Automata Theory

“We observe that all the preceding properties are grouped in pairs.  Within 

each pair one statement can be obtained from the other by interchanging 

the OR and AND operations and replacing the constants 0 and 1 by 1 and 0 

respectively.  Any two statements or theorems which have this property are 

called dual, and this quality of duality which characterizes switching algebra 

is known as the principle of duality.  It stems from the symmetry of the 

postulates and definitions of switching algebra with respect to the two 

operations and the two constants.  The implication of the concept of duality 

is that it is necessary to prove only one of each pair of statements, and its 

dual is henceforth proved.”
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Boolean Algebra

� Single-Variable Theorems

� Theorems can be proven with truth tables
� Truth table proof a.k.a., “Perfect Induction”

X · 0 = 0 X + 1 = 1

X · 1 = X X + 0 = X 

X · X = X X + X = X

X · X’ = 0 X + X’ = 1

(X’)’ = X
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Boolean Algebra

� Two- and Three-Variable Properties

� Commutative

X · Y = Y · X X + Y = Y + X

� Associative

X · (Y · Z) = (X · Y) · Z X + (Y + Z) = (X + Y) + Z

� Distributive

X · (Y + Z) = X · Y + X · Z X + (Y · Z) = (X + Y)·(X + Z)



6

June 24, 2009 ECE 152A - Digital Design Principles 11

Boolean Algebra

� Absorption (Simplification)

X + X · Y = X X · ( X + Y ) = X

Y

X
0 1

0

1

Y

X
0 1

0

1 1 1

0 0

X X·Y XX+Y
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Boolean Algebra

� Combining (Simplification)

X · Y + X · Y’ = X (X + Y) · (X + Y’) = X

Y

X
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X
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0
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X·YX·Y’ X X X+Y’X+Y
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Boolean Algebra

� Redundant Coverage (simplification)

X + X’ · Y = X + Y X · (X’ + Y) = X · Y

Y
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Boolean Algebra

� The Consensus Theorem

XY + X’Z + YZ = XY + X’Z

YZ

X
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Boolean Algebra

� DeMorgan’s Theorem

(X · Y)’ = X’ + Y’ (X + Y)’ = X’ · Y’

Y
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Boolean Expressions

� Precedence of Operations

� Order of evaluation
� 1.  NOT

� 2.  AND

� 3.  OR

� Or forced by parentheses

� Example: F = ab’c + a’b + a’bc’ + b’c’
� a=0, b=0 and c=1

� NOT: 011 + 10 + 100 + 10

� AND: 0   +   0 +   0   +   0

� OR: 0
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Boolean Expressions, Logic Networks, Karnaugh 

Maps, Truth Tables & Timing Diagrams

� Derive Logic Network, Karnaugh Map, Truth 

Table and Timing Diagram from:

� F = ab’c + a’b + a’bc’ + b’c’

� 3 variables, 10 literals, 4 product terms

� Expression is in Standard Sum-of-Products form

� i.e., the function is the sum (or logical OR) or the four 

product (or logical AND) terms

� The alternative standard form is Product-of-Sums

� The expression “implies” structure

� Direct realization with AND, OR and NOT functions
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Boolean Expressions, Logic Networks, Karnaugh 

Maps, Truth Tables & Timing Diagrams

� Logic Network

� F = ab’c + a’b + a’bc’ + b’c’
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Boolean Expressions, Logic Networks, Karnaugh 

Maps, Truth Tables & Timing Diagrams

� Karnaugh Map

� F = ab’c + a’b + a’bc’ + b’c’

bc
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1
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ab’c a’b

a’bc’
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Boolean Expressions, Logic Networks, Karnaugh 

Maps, Truth Tables & Timing Diagrams

� Note possible simplification

� Redundant coverage (eliminates literal) and absorption 

(eliminates product term)

bc
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Boolean Expressions, Logic Networks, Karnaugh 

Maps, Truth Tables & Timing Diagrams

� Truth Table

� F = ab’c + a’b + a’bc’ + b’c’

0111

0011

1101

1001

1110

1010

0100

1000

Fcba
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Boolean Expressions, Logic Networks, Karnaugh 

Maps, Truth Tables & Timing Diagrams

� Timing Diagram (Functional Simulation)

� F = ab’c + a’b + a’bc’ + b’c’

1 0 0 01 1 1 1

000Input

Output

001 010 011 100 101 110 111
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Minterms and Maxterms

� Minterm

� A product term which contains each of the n

variables as factors in either complemented or 

uncomplemented form is called a minterm

� Example for 3 variables: ab’c is a minterm; ab’ is not

� Maxterm

� A sum term which contains each of the n variables 

as factors in either complemented or 

uncomplemented form is called a maxterm

� For 3 variables: a’+b+c’ is a maxterm; a’+b is not
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Minterms and Maxterms

� Minterm and Maxterm Expansion

� Three variable example:

iiii mMandMm == )'()'( KK
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Sum-of-Products Form

� Canonical Sum-of-Products (or Disjunctive 

Normal) Form

� The sum of all minterms derived from those rows 

for which the value of the function is 1 takes on 

the value 1 or 0 according to the value assumed 

by f.  Therefore this sum is in fact an algebraic 

representation of f.  An expression of this type is 

called a canonical sum of products, or a 

disjunctive normal expression. 

Kohavi
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Minterms and Maxterms

� Truth Table from earlier example

� F = ab’c + a’b + a’bc’ + b’c’

0 = a711m7 M7 1

0 = a601m6 M6 1

1 = a510m5 M5 1

1 = a400m4 M4 1

1 = a311m3 M3 0

1 = a201m2 M2 0

0 = a110m1 M1 0

1 = a000m0 M0 0

Fcba
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Sum-of-Products

� Canonical Sum-of-Products

� F = ab’c + a’b + a’bc’ + b’c’
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Product-of-Sums Form

� Canonical Product-of-Sums (or Conjunctive 

Normal) Form

� An expression formed of the product of all 

maxterms for which the function takes on the 

value 0 is called a canonical product of sums, or a 

conjunctive normal expression.
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Product-of-Sums

� Canonical Product-of-Sums

� F = ab’c + a’b + a’bc’ + b’c’
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General Sum-of-Product (SOP) and 

Product-of-Sums (POS) Forms

� ai is the Boolean value of the function in the i
th row 

of an n-variable Truth Table
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Equivalence of SOP and POS Forms

� Minterm / Maxterm Lists
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Functionally Complete Operations

� A set of operations is said to be functionally 

complete (or universal) if and only if every 

switching function can be expressed entirely by 

means of operations from this set

� [Since] every switching function can be expressed in a 

canonical sum-of-products [and product-of-sums] form, 

where each expression consists of a finite number of 

switching variables, constants and the operations AND, 

OR and NOT [this set of operations is functionally 

complete]
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SOP Realization with NAND/NAND

� The NAND operation is functionally complete
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POS Realization with NOR/NOR

� The NOR operation is functionally complete


